692 research outputs found

    The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish.

    Get PDF
    The cerebellum represents one of the most morphologically variable structures in the vertebrate brain. To shed light on its evolutionary history, we have examined the molecular anatomy and proliferation of the developing cerebellum of the North American paddlefish, Polyodon spathula. Absence of an external proliferative cerebellar layer and the restriction of Atonal1 expression to the rhombic lip and valvular primordium demonstrate that transit amplification in a cerebellar external germinal layer, a prominent feature of amniote cerebellum development, is absent in paddlefish. Furthermore, expression of Sonic hedgehog, which drives secondary proliferation in the mouse cerebellum, is absent from the paddlefish cerebellum. These data are consistent with what has been observed in zebrafish and suggest that the transit amplification seen in the amniote cerebellum was either lost very early in the ray-finned fish lineage or evolved in the lobe-finned fish lineage. We also suggest that the Atoh1-positive proliferative valvular primordium may represent a synapomorphy (shared derived character) of ray-finned fishes. The topology of valvular primordium development in paddlefish differs significantly from that of zebrafish and correlates with the adult cerebellar form. The distribution of proliferative granule cell precursors in different vertebrate taxa is thus the likely determining factor in cerebellar morphological diversity.This work was funded by the BBSRC (BB/I021507/1 to R.J.T.W; BB/F00818X/1 to C.V.H.B.), and the Fisheries Society of the British Isles (Small Research Grant to M.S.M.).This is the final version of the article. It was first available from Wiley via http://dx.doi.org/10.1111/ede.1206

    The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary

    Get PDF
    The Actinopterygii or ray-finned fishes comprise, in addition to the large superorder of teleosts, four other superorders, namely the cladistians, the chondrosteans, the ginglymodes, and the halecomorphs, each with a limited number of species. The telencephalon of actinopterygian fishes differs from that in all other vertebrates in that it consists of a pair of solid lobes. Lateral ventricles surrounded by nervous tissue are entirely lacking. At the end of the nineteenth century, the theory was advanced that the unusual configuration of the forebrain in actinopterygians results from an outward bending or eversion of its lateral walls. This theory was accepted by some authors, rejected or neglected by others, and modified by some other authors. The present paper is based on the data derived from the literature, complemented by new observations on a large collection of histological material comprising specimens of all five actinopterygian superorders. The paper consists of three parts. In the first, a survey of the development of the telencephalon in actinopterygian fishes is presented. The data collected show clearly that an outward bending or eversion of the pallial parts of the solid hemispheres is the principal morphogenetic event in all five actinopterygian superorders. In all of these superorders, except for the cladistians, eversion is coupled with a marked thickening of the pallial walls. In the second part, some aspects of the general morphology of the telencephalon in mature actinopterygians are highlighted. It is pointed out that (1) the degree of eversion varies considerably among the various actinopterygian groups; (2) eversion leads to the transformation of the telencephalic roof plate into a wide membrane or tela choroidea, which is bilaterally attached to the lateral or ventrolateral aspect of the solid hemispheres; (3) the lines of attachment or taeniae of the tela choroidea form the most important landmarks in the telencephalon of actinopterygians, indicating the sites where the greatly enlarged ventricular surface of the hemispheres ends and its reduced meningeal surface begins; (4) the meningeal surface of the telencephalon shows in most actinopterygians bilaterally a longitudinally oriented sulcus externus, the depth of which is generally positively correlated with the degree of eversion; (5) a distinct lateral olfactory tract, occupying a constant topological position close to the taenia, is present in all actinopterygians studied; and (6) this tract is not homologous to the tract of the same name in the evaginated and inverted forebrains of other groups of vertebrates. In the third and final section, the concept that the structural organization of the pallium in actinopterygians can be fully explained by a simple eversion of its walls, and the various theories, according to which the eversion is complicated by extensive shifts of its constituent cell groups, are discussed and evaluated. It is concluded that there are no reasons to doubt that the pallium of actinopterygian fishes is the product of a simple and complete eversion

    Susceptibility inhomogeneity and non-Fermi liquid behavior in UCu_{5-x}Pt_x

    Full text link
    Transverse-field muSR shifts and relaxation rates have been measured in the non-Fermi liquid (NFL) alloy system UCu_{5-x}Pt_x, x = 1.0, 1.5, and 2.5. At low temperatures the fractional spread in Knight shifts delta K/K approx deltachi/chi is gtrsim 2 for x = 1, but is only half this value for x = 1.5 and 2.5. In a disorder-driven scenario where the NFL behavior is due to a broadly distributed (Kondo or Griffiths-phase cluster) characteristic energy E, our results indicate that delta E/E_{rm av} approx (delta K/K)_{T=0} is similar for UCu_{5-x}Pd_x (x = 1 and 1.5) and UCu_4Pt, but is reduced for UCu_{5-x}Pt_x, x = 1.5 and 2.5. This reduction is due to a marked increase of E with increasing x; the spread delta E is found to be roughly independent of x. Our results correlate with the observed suppression of other NFL anomalies for x > 1 in UCu_{5-x}Pt_x but not in UCu_{5-x}Pd_x, and are further evidence for the importance of disorder in the NFL behavior of both these alloy systems.Comment: 4 pages, 2 figures, submitted to 10th International Conference on Muon Spin Rotation, Relaxation, and Resonance, Oxford, UK, August 200

    Glassy Spin Dynamics in Non-Fermi-Liquid UCu_{5-x}Pd_x, x = 1.0 and 1.5

    Full text link
    Local f-electron spin dynamics in the non-Fermi-liquid heavy-fermion alloys UCu_{5-x}Pd_x, x = 1.0 and 1.5, have been studied using muon spin-lattice relaxation. The sample-averaged asymmetry function Gbar(t) indicates strongly inhomogeneous spin fluctuations, and exhibits the scaling Gbar(t,H) = Gbar(t/H^\gamma) expected from glassy dynamics. At 0.05 K \gamma(x=1.0) = 0.35 \pm 0.1, but \gamma(x=1.5) = 0.7 \pm 0.1. This is in contrast to inelastic neutron scattering results, which yield \gamma = 0.33 for both concentrations. There is no sign of static magnetism \gtrsim 10^{-3} \mu_B/U ion in either material above 0.05 K. Our results strongy suggest that both alloys are quantum spin glasses.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Proximity effects in the superconductor / heavy fermion bilayer system Nb / CeCu_6

    Get PDF
    We have investigated the proximity effect between a superconductor (Nb) and a 'Heavy Fermion' system (CeCu_6) by measuring critical temperatures TcT_c and parallel critical fields H_{c2}^{\parallel}(T) of Nb films with varying thickness deposited on 75 nm thick films of CeCu_6, and comparing the results with the behavior of similar films deposited on the normal metal Cu. For Nb on CeCu_6 we find a strong decrease of T_c with decreasing Nb thickness and a finite critical thickness of the order of 10 nm. Also, dimensional crossovers in H_{c2}^{\parallel}(T) are completely absent, in strong contrast with Nb/Cu. Analysis of the data by a proximity effect model based on the Takahashi-Tachiki theory shows that the data can be explained by taking into account both the high effective mass (or low electronic diffusion constant), {\it and} the large density of states at the Fermi energy which characterize the Heavy Fermion metal.Comment: 7 pages, 2 figure. Manuscript has been submitted to a refereed journa

    Magnetism of PdNi alloys near the critical concentration for ferromagnetism

    Full text link
    We report results of a muon spin rotation and relaxation (μ\muSR) study of dilute Pd1x_{1-x}Nix_x alloys, with emphasis on Ni concentrations x=x = 0.0243 and 0.025. These are close to the critical value xcrx_\mathrm{cr} for the onset of ferromagnetic long-range order (LRO), which is a candidate for a quantum critical point. The 2.43 and 2.5 at.% Ni alloys exhibit similar μ\muSR properties. Both samples are fully magnetic, with average muon local fields Bloc=\langle B^\mathrm{loc}\rangle = 2.0 and 3.8 mT and Curie temperatures TC=T_C = 1.0 and 2.03 K for 2.43 and 2.5 at.% Ni, respectively, at T=0T = 0. The temperature dependence of Bloc\langle B^\mathrm{loc}\rangle suggests ordering of Ni spin clusters rather than isolated spins. Just above TCT_C a two-phase region is found with separate volume fractions of quasistatic short-range order (SRO) and paramagnetism. The SRO fraction decreases to zero with increasing temperature a few kelvin above TCT_C. This mixture of SRO and paramagnetism is consistent with the notion of an inhomogeneous alloy with Ni clustering. The measured values of TCT_C extrapolate to xcrx_\mathrm{cr} = 0.0236 ±\pm 0.0027. The dynamic muon spin relaxation in the vicinity of TCT_C differs for the two samples: a relaxation-rate maximum at TCT_C is observed for xx = 0.0243, reminiscent of critical slowing down, whereas for x=x = 0.025 no dynamic relaxation is observed within the μ\muSR time window. The data suggest a mean-field-like transition in this alloy.Comment: 15 pages, 15 figures, to be published in Phys. Rev.

    Finite size effects with variable range exchange coupling in thin-film Pd/Fe/Pd trilayers

    Full text link
    The magnetic properties of thin-film Pd/Fe/Pd trilayers in which an embedded ~1.5 A-thick ultrathin layer of Fe induces ferromagnetism in the surrounding Pd have been investigated. The thickness of the ferromagnetic trilayer is controlled by varying the thickness of the top Pd layer over a range from 8 A to 56 A. As the thickness of the top Pd layer decreases, or equivalently as the embedded Fe layer moves closer to the top surface, the saturated magnetization normalized to area and the Curie temperature decrease whereas the coercivity increases. These thickness-dependent observations for proximity-polarized thin-film Pd are qualitatively consistent with finite size effects that are well known for regular thin-film ferromagnets. The critical exponent β\beta of the order parameter (magnetization) is found to approach the mean field value of 0.5 as the thickness of the top Pd layer increases. The functional forms for the thickness dependences, which are strongly modified by the nonuniform exchange interaction in the polarized Pd, provide important new insights to understanding nanomagnetism in two-dimensions.Comment: 14 pages, 5 figures, submitted to JMM
    corecore